
1

1

Input/Output

2

Range of I/O Hardware

Some typical device, network, and data base rates

2

3

How do we talk to Hardware?
Through Device Controllers

•  I/O devices have components:
–  mechanical component
–  electronic component

•  The electronic component is the device controller
–  may be able to handle multiple devices (e.g., IDE

handles two, SCSI handles 8)
•  Controller's tasks (examples)

–  interpret instructions from the cpu, translating them into
mechanical steps.

–  convert data between serial bit stream for the hardware
and blocks of bytes for the software.

–  perform error correction as necessary on the data read
from the device.

–  make data available to main memory

4

But how do we talk to the
Controller?

•  Each controller has one or more “ports”.
•  A port is an “address” that we can read from or

write to.
•  We read from the port (or write to it) by putting

the port’s address on the bus.
•  Every device (including memory) can look at the

bus. If you’re a device controller and you see
your address on the bus, then you respond to the
corresponding command.

3

5

How does a program address a port?

•  Separate I/O space
•  Memory-mapped I/O
•  Hybrid

6

Memory-Mapped I/O Issues

(a) A single-bus architecture
(b) A dual-bus memory architecture

4

7

Common Layout

8

Programmed I/O

To print a string
•  Loop (bit-spin) checking to see if the device

is ready. This requires reading the device’s
status port.

•  Write a character to the output port.
•  Repeat until all characters have been

written.

5

9

Programmed I/O

Writing a string to the printer using
programmed I/O

10

Interrupts Revisited

How interrupts happens. Connections between devices and
interrupt controller actually use interrupt lines on the bus
rather than dedicated wires

6

11

Interrupt Driven I/O

To print a string
•  When device is ready:

–  Write a character to the output port.
–  Go do something else. Probably involving a context

switch.

•  Receive an interrupt because the printer finished
printing.

•  Repeat until all characters have been written.

12

Interrupt-Driven I/O

•  Writing a string to the printer using interrupt-driven I/O
–  Code executed when print system call is made
–  Interrupt service procedure

7

13

Direct Memory Access (DMA)

Operation of a DMA transfer

14

I/O Using DMA

Printing a string using DMA
a)  code executed when the print system call is made
b)  interrupt service procedure

8

15

Principles of I/O Software
Issues

•  Device independence
•  Naming
•  Error handling
•  Synchronous vs. asynchronous transfers
•  Buffering
•  Sharable vs. dedicated devices

16

I/O Software Layers

Layers of the I/O Software System

9

17

Interrupt Handlers

•  Steps must be performed in software after
interrupt occurs

1.  Save regs not already saved by interrupt hardware
2.  Set up context for interrupt service procedure
3.  Set up stack for interrupt service procedure
4.  Ack interrupt controller, reenable interrupts
5.  Copy registers from where saved
6.  Run service procedure
7.  Possible Context Switch.
8.  Start running selected process

18

Device Drivers

•  Logical position of device drivers is shown here
•  Communications between drivers and device controllers

goes over the bus

10

19

Device-Independent I/O Software (1)

Functions of the device-independent I/O software

Uniform interfacing for device drivers

Buffering

Error reporting

Allocating and releasing dedicated devices

Providing a device-independent block size

20

Device-Independent I/O Software (2)

(a) Without a standard driver interface
(b) With a standard driver interface

11

21

Device-Independent I/O Software (3)

(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by copying to user space
(d) Double buffering in the kernel

22

Device-Independent I/O Software (4)

Networking may involve many copies

12

23

User Space I/O Software
•  Libraries

–  System calls.
•  In C, we can have the following function call.

count = write(fd, buffer, nbytes); 
•  The C function “write” is a library function that is linked into the user’s program

•  It places its arguments on the stack (or in registers) and issues the corresponding trap
instruction to request the the necessary kernel code to run

–  printf is a library function that does a lot of work before issuing a system call:
printf(“The square of %3d is %6d\n”, i, i * i); 

•  Daemons
–  “Processes that stay in the background to handle some activity such as email,

Web pages, news, printing, etc. are called daemons”

–  Common example is printer spooling.
–  Note that some daemons may run purely in kernel mode (such as the page

daemon)

24

I/O Software Summary

 Layers of the I/O system and the main
functions of each layer

13

25

Unix I/O Management

•  I/O devices are made to look like files.
–  Provides uniform naming
–  Devices appear as files in the directory /dev

•  /dev/hda is the first drive on the IDE controller.
•  /dev/hda4 is partition 4 on the same device.
•  /dev/lp is the printer

–  Devices are categorized as either “block” or “character”
special files.

•  Block files support random access to individual blocks, using
the seek command.

•  Character files behave as a stream of characters. Not possible
or even meaningful to “seek” on a keyboard.

26

Unix I/O Management
•  “Special” Files

–  E.g., /dev/hda
–  Contains

•  major and minor device numbers
•  a flag to indicate whether it is a block special file or a character

special file.
–  Major device number is an index into either

•  the bdevsw array for block devices, or
•  the cdevsw array for character devices.
•  the array entries are structs that hold pointers to functions.

–  Minor device numbers indicate which instance this is of
several equivalent devices.

•  The minor device number is passed as a parameter to the
functions pointed to in the bdevsw and cdevsw arrays.

14

27

UNIX I/O

Some of the fields of a typical cdevsw array

28

Disks

Disk parameters for the original IBM PC floppy disk
and a Western Digital WD 18300 hard disk

15

29

Rotation Time

•  Inverse of spin rate. Convert minutes to msec as that’s
right order of magnitude.

•  Examples
–  4200 rpm

•  60,000 msec / 4200 = 100 / 7 = 14 2/7 msec. ≈ 14.3 msec
–  5400 rpm

•  60,000 msec / 5400 = 100 / 9 = 11 1/9 msec. ≈ 11.1 msec.
–  7200 rpm

•  60,000 msec / 7200 = 100 / 12 = 8 1/3 msec. ≈ 8.3 msec.
–  10K rpm

•  60,000 msec / 10,000 = 6 msec.
–  15K rpm

•  60,000 msec / 15,000 = 4 msec.

30

Disk Formatting

A disk sector

16

31

Disk Formatting (3)

•  No interleaving
•  Single interleaving
•  Double interleaving

32

Disk Arm Scheduling
•  Time required to read or write a disk block

determined by 3 factors
1.  Seek time – the time needed for the arm to move to

the desired cylinder.
2.  Rotational delay – the time needed for the desired

sector to move under the head.
3.  Transfer time – the time needed, after the head is

positioned over the the correct sector, for the data to
transfer from the device to memory.

•  Seek time dominates
•  Error checking is done mostly by controllers

17

33

Computing Access Time

•  Access Time =
 seek time +
 rotational latency +
 transfer time

•  Example
–  Assume 10K rpm, average seek time of 8 msec,

160KB per track. What is the time to access 4KB?
•  Rotation time = 6 msec.
•  Rotational latency = ½ rotation time = 3 msec
•  Transfer time = fraction of track * rotation time

 = (4 / 160) * 6 msec = 0.15 msec
•  Access time = 8 + 3 + 0.15 msec = 11.15 msec.

34

Disk Formatting (2)

An illustration of cylinder skew

18

35

Calculating Skew

•  Compute the rotation time (time per rotation)
•  Compute read time per sector
•  Divide the track-to-track seek time by the sector read time.
•  Example

–  Assume 10K rpm, 300 sectors per track and track-to-track seek
time of 800 µsec

•  Rotation time = 1 minute / 10K rotations
 = 60,000 msec / 10,000 rev
 = 6 msec

•  Sector read time = 6 msec / 300 sectors
 = 20 µsec per sector

•  Skew = 800 µsec / 20 µsec
 = 40

36

Variable Sized Tracks

•  Physical geometry of a disk with two zones
•  A possible virtual geometry for this disk

19

37

Disk Arm Scheduling Algorithms

•  FCFS
•  Shortest Seek First (SSF)
•  Elevator

– Also known as SCAN
•  C-SCAN

38

Disk Arm Scheduling Algorithms

Shortest Seek First (SSF) disk scheduling algorithm

Initial
position

Pending
requests

20

39

Disk Arm Scheduling Algorithms

The elevator (aka SCAN) algorithm for scheduling disk requests
•  Requires a “current direction”

40

Disk Arm Scheduling Algorithms

C-SCAN
•  Like elevator.
•  But runs express from top down to ground

floor.
•  Provides more “uniform wait time” than

SCAN.

21

41

Error Handling

•  A disk track with a bad sector
•  Substituting a spare for the bad sector
•  Shifting all the sectors to bypass the bad one

42

RAID
Redundant Array of Inexpensive Disks

•  Raid level 0 provides parallel access to the data. Strips are multiple sectors in size.
•  Raid level 1 does the same, but adds backup and improved performance (either copy

can be accessed).
•  Raid level 2 increases the reliability, by using multiple redundancy bits. Here 4 bits

of data are encoded with an additional three bits of redundancy to allow for a
“Hamming” code. This approach was used effectively on Thinking Machines CM-2
supercomputer.

22

43

RAID (cont.)

•  Raid level 3 is simpler than level 2, uses a single parity bit for
error checking.

•  Raid level 4, like Raid 0 but uses a parity drive.
•  Raid level 5 rotates the parity across the various drives to reduce

contention.

44

Recording structure of a CD-ROM

23

45

Logical data layout on a CD-ROM

46

Clocks
IBM-PC and Linux

•  Three types of clocks
–  Programmable Interval Timer (PIT)

•  Programmed by kernel so that it issues interrupts at fixed predefined frequency
for use as timers.

•  IBM-PC compatibles all have at least one PIT on ports 0x40-0x43.
•  Linux programs it to raise an interrupt on IRQ0 every 10ms. This is the “clock

tick”.
•  On very fast processors like the Alpha, it interrupts every 1ms.

–  Real Time Clock
•  Used to maintain time of day even when power is off
•  Can also be used as an alarm clock with accuracy to 1ms.

–  Time Stamp Counter
•  Pentium has a CLK pin that receives a clock signal and updates a counter.
•  Current value accessible through an assembly language instruction.
•  May be incremented every 2-3ns. Calibrated against the PIT.

24

47

Soft Timers
•  A clock available for timer requests

– specified by applications
– no problems if interrupt frequency is low

•  Soft timers avoid interrupts
– kernel checks for soft timer expiration before it

exits to user mode
– how well this works depends on rate of kernel

entries

